๐Ÿง  What are Microprocessors?

A microprocessor is the central processing unit (CPU) of a computer system, fabricated on a small chip (integrated circuit). It's essentially the "brain" that executes instructions and controls the entire computing system.

Think of it like a highly efficient manager in a company:

  • ๐Ÿ“ฅ Fetching: Getting tasks (instructions) from the to-do list (memory)
  • ๐Ÿ” Decoding: Understanding what each task actually means
  • โšก Executing: Performing the actual work (calculations, data movement)
  • ๐Ÿšฆ Controlling: Managing the flow of information between departments

๐Ÿ”ง Key Technical Components

  • Transistors: Billions of microscopic switches (3nm-14nm process)
  • Clock Speed: Operations per second (3-5 GHz typical)
  • Cores: Independent processing units (2-128 cores)
  • Cache: High-speed memory (32KB L1 to 256MB L3)
  • TDP: Thermal Design Power (15W-300W)
๐Ÿ“ˆ Microprocessor Evolution Timeline

๐Ÿ•ฐ๏ธ
1971-1980
Intel 4004
8080
Motorola 6800
๐Ÿš€
1980-1990
8086
68000
80386
๐Ÿ’พ
1990-2000
Pentium
AMD K6
Pentium Pro
๐Ÿ”ฅ
2000-2010
Athlon 64
Core 2
ARM Cortex-A8
๐ŸŒŸ
2010-Present
Apple M1
AMD Zen
RISC-V

๐Ÿ“Š Comprehensive Architecture Types

Based on Data Width & Capability

Generation Bit Width Address Space Examples Era Performance
1st Gen 4-bit 16 bytes Intel 4004, 4040 1971-1974 Basic calculators
2nd Gen 8-bit 64 KB Intel 8080, Z80, 6502 1974-1978 Early PCs, gaming
3rd Gen 16-bit 1 MB 8086, 68000, Z8000 1978-1985 Professional PCs
4th Gen 32-bit 4 GB 80386, 68020, ARM 1985-1995 Modern computing
5th Gen 64-bit 16 EB x86-64, ARM64, SPARC64 1995-Present High-performance

๐Ÿ—๏ธ Detailed Instruction Set Architectures

๐Ÿ”ง CISC (Complex Instruction Set)

Philosophy: Hardware complexity, software simplicity

Instructions: 100-1000+ complex operations

Addressing: Multiple memory addressing modes

Execution: Variable instruction length & timing

// CISC Example (x86)
MOVS [EDI], [ESI]
// String copy instruction
// - Loads from memory
// - Stores to memory
// - Updates pointers
// - Checks boundaries
// All in one instruction! LOOP label // Decrement ECX, jump if not zero ENTER 16, 0 // Setup stack frame XLAT // Table lookup translation

Examples: Intel x86/x64, IBM z/Architecture, VAX

โšก RISC (Reduced Instruction Set)

Philosophy: Software complexity, hardware simplicity

Instructions: ~50-200 simple operations

Addressing: Load/store architecture

Execution: Fixed instruction length, single cycle

// RISC Example (ARM/MIPS) LDR R1, [R2] // Load register from memory ADD R3, R1, #4 // Add immediate to register STR R3, [R4] // Store register to memory // Each instruction: // - 32-bit fixed length // - Single operation // - Predictable timing // - Pipeline friendly

Examples: ARM, MIPS, RISC-V, PowerPC, SPARC

๐ŸŽฏ VLIW (Very Long Instruction Word)

Philosophy: Compiler manages parallelism

Instructions: Multiple operations per word

Scheduling: Static (compile-time)

Execution: Explicit parallel execution

// VLIW Example (Itanium) [.MMI] // Memory, Memory, Integer bundle ld8 r4=[r5];; // Load operation ld8 r6=[r7] // Parallel load add r8=r9,r10;; // Integer operation [.MIB] // Memory, Integer, Branch st8 [r11]=r12 // Store operation cmp.eq p1,p2=r13,r14 // Compare (p1) br.cond label // Conditional branch

Examples: Intel Itanium, TI TMS320C6x DSP

๐Ÿ”„ EPIC (Explicitly Parallel Instruction Computing)

Philosophy: Hybrid VLIW with dynamic features

Instructions: Bundled with hints

Prediction: Advanced branch prediction

Speculation: Hardware speculation support

// EPIC Features (Itanium) .explicit_bundling {.mii ld8.s r32=[r33] // Speculative load add r34=r35,r36 // Integer add mov.i ar.lc=r37 // Loop count setup } {.mmb ld8.c.clr r38=[r39] // Check & clear st8 [r40]=r41 // Store br.ctop.sptk.few loop // Branch top }

Examples: Intel Itanium IA-64

๐Ÿ›๏ธ Memory Architecture Models

๐Ÿ“š Von Neumann Architecture (Stored Program)

๐ŸŽฏ Key Principle: Instructions and data share the same memory space

Control Unit
ALU
Registers
Unified Memory
I/O Controller

โœ… Advantages:

  • Simpler hardware design and control logic
  • Flexible memory allocation between code and data
  • Self-modifying code possible
  • Cost-effective implementation

โŒ Disadvantages:

  • Von Neumann Bottleneck: Single bus limits throughput
  • Cannot fetch instruction and data simultaneously
  • Security vulnerabilities (code injection attacks)
  • Cache conflicts between instructions and data

๐Ÿ“– Harvard Architecture (Separate Storage)

๐ŸŽฏ Key Principle: Separate memory spaces for instructions and data

CPU Core
Instruction Memory
ROM/Flash
Data Memory
RAM/SRAM

โœ… Advantages:

  • Parallel access to instructions and data
  • Higher memory bandwidth and performance
  • Better security (code/data separation)
  • Optimized memory types for each use

โŒ Disadvantages:

  • More complex hardware design
  • Fixed memory allocation (less flexible)
  • Higher cost due to dual memory systems
  • Cannot execute dynamically generated code

๐Ÿ”€ Modified Harvard Architecture (Modern Hybrid)

๐ŸŽฏ Key Principle: Harvard at cache level, Von Neumann at main memory

CPU Core
L1 I-Cache
L1 D-Cache
Unified L2/L3 Cache
Main Memory (DDR4/5)
Modern CPU Memory Hierarchy: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ CPU Core (3-5 GHz) โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ L1 I-Cache | L1 D-Cache โ”‚ โ† Harvard (Separate) โ”‚ 32-64KB | 32-64KB โ”‚ ~1-2 cycles โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ L2 Cache (Unified) โ”‚ โ† Von Neumann (Shared) โ”‚ 256KB - 1MB โ”‚ ~3-8 cycles โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ L3 Cache (Unified) โ”‚ โ† Von Neumann (Shared) โ”‚ 8MB - 256MB โ”‚ ~12-40 cycles โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ Main Memory (Unified) โ”‚ โ† Von Neumann (Shared) โ”‚ 4GB - 128GB โ”‚ ~200-300 cycles โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿš€ Advanced Modern Architectures

๐ŸŽฎ Heterogeneous Computing (SoC)

๐Ÿ“ฑ Mobile SoC Architecture

big.LITTLE CPU
4x Performance
4x Efficiency
GPU
Mali/Adreno
1000+ cores
NPU/AI
Neural Engine
26 TOPS
ISP/DSP
Image/Signal
Processing

Examples: Apple A17 Pro, Snapdragon 8 Gen 3

๐Ÿ–ฅ๏ธ Desktop/Server Architecture

CPU
8-64 cores
x86/ARM
GPU
5000+ cores
CUDA/OpenCL
Memory
DDR5/HBM
128GB-2TB
I/O
PCIe 5.0
64 lanes

Examples: Intel Xeon, AMD EPYC, NVIDIA Grace

๐Ÿง  Specialized Processing Architectures

๐ŸŽฏ Vector Processors

// Vector Operation Example Vector A: [1, 2, 3, 4, 5, 6, 7, 8] Vector B: [2, 3, 4, 5, 6, 7, 8, 9] Vector C = A + B // Single instruction Traditional: 8 separate ADD operations Vector: 1 VADD operation (8 elements) // Modern AVX-512 (x86) VADDPS zmm0, zmm1, zmm2 // 16 floats in parallel

Applications: Scientific computing, AI/ML, image processing

๐ŸŒŠ Dataflow Architecture

// Dataflow Execution Model Node A: input1, input2 โ†’ ADD โ†’ output Node B: output, input3 โ†’ MUL โ†’ result Node C: result โ†’ STORE Execution when data available: Time 1: A executes (inputs ready) Time 2: B executes (A output ready) Time 3: C executes (B output ready) No program counter needed!

Applications: Signal processing, real-time systems

๐Ÿ”„ Systolic Arrays

// Matrix Multiplication Systolic Array aโ‚โ‚ aโ‚โ‚‚ aโ‚โ‚ƒ โ†“ โ†“ โ†“ bโ‚โ‚โ†’ PE PE PE โ†’ cโ‚โ‚ bโ‚โ‚‚โ†’ PE PE PE โ†’ cโ‚โ‚‚ bโ‚โ‚ƒโ†’ PE PE PE โ†’ cโ‚โ‚ƒ Each PE: multiply + accumulate Data flows through array Highly parallel computation

Applications: Neural networks (TPU), linear algebra

๐Ÿ›๏ธ Interactive CPU Architecture Explorer

๐Ÿ” Von Neumann Architecture Deep Dive

Click on each component to explore its detailed functionality:

Control Unit
ALU
Registers
Memory
I/O Devices
Cache System

๐ŸŽฏ Control Unit (CU) - The CPU's Conductor

The Control Unit orchestrates all CPU operations through a complex state machine:

๐Ÿ”„ Instruction Cycle (Fetch-Decode-Execute)
1. FETCH Phase: PC โ†’ MAR โ†’ Address Bus โ†’ Memory Memory โ†’ Data Bus โ†’ MDR โ†’ IR PC = PC + instruction_length 2. DECODE Phase: IR โ†’ Instruction Decoder Opcode analysis โ†’ Control signals Operand addressing โ†’ Effective address 3. EXECUTE Phase: Control signals โ†’ ALU/Memory/I/O Data manipulation โ†’ Result storage Status flags update โ†’ Next instruction
๐ŸŽช Control Unit Types
  • Hardwired Control: Logic circuits, faster but inflexible
  • Microprogrammed Control: Microcode, flexible but slower
  • Hybrid Control: Combines both approaches
โšก Modern Features
  • Pipelining: Overlapping instruction phases
  • Branch Prediction: Speculative execution
  • Out-of-Order: Dynamic instruction scheduling
  • Superscalar: Multiple instructions per cycle

๐Ÿงฎ Arithmetic Logic Unit (ALU) - The Calculator

The ALU performs all computational operations:

๐Ÿ”ข Arithmetic Operations
Binary Addition with Carry: 1101 (13) Carry: 1110 + 1010 (10) โ†“โ†“โ†“โ†“ ------- Result: 10111 (23) 10111 (23) Multiplication (Booth's Algorithm): Multiplier: 1010 (-6 in 2's complement) Multiplicand: 1101 (13) Result: 11111100010 (-62 in 2's complement)
๐Ÿ”— Logic Operations
Input A: 1101 Input B: 1010 AND: 1000 NAND: 0111 OR: 1111 NOR: 0000 XOR: 0111 XNOR: 1000 NOT A: 0010 NOT B: 0101 Shift Operations: LSL (Left): 1101 โ†’ 11010 (ร—2) LSR (Right): 1101 โ†’ 0110 (รท2) ASR (Arith): 1101 โ†’ 1110 (sign extend) ROR (Rotate):1101 โ†’ 1110 (circular)
๐ŸŽฏ Status Flags
  • Zero (Z): Result is zero
  • Carry (C): Arithmetic carry/borrow
  • Negative (N): Result is negative
  • Overflow (V): Signed arithmetic overflow
  • Parity (P): Even/odd number of 1s

๐Ÿ’พ Register File - High-Speed Storage

Registers provide the fastest data access in the CPU:

๐Ÿ“‹ Register Categories
General Purpose Registers (x86-64): RAX, RBX, RCX, RDX - Legacy 64-bit RSI, RDI - String operations R8-R15 - Additional 64-bit EAX, EBX, etc. - 32-bit portions AX, BX, etc. - 16-bit portions AL, AH, BL, BH - 8-bit portions Special Purpose: RSP - Stack Pointer RBP - Base Pointer RIP - Instruction Pointer RFLAGS - Status flags
โšก Performance Hierarchy
Speed Capacity
Storage Hierarchy (Access Time): Registers: < 1 cycle 32-128 registers L1 Cache: 1-2 cycles 32-64 KB L2 Cache: 3-8 cycles 256KB-1MB L3 Cache: 12-40 cycles 8-256MB Main Memory: 200+ cycles 4GB-1TB Storage: 1M+ cycles 500GB-100TB
๐ŸŽช Register Allocation
  • Compiler: Static register allocation
  • Hardware: Register renaming (dynamic)
  • Spilling: Register-to-memory overflow
  • Banking: Multiple register sets

๐Ÿ—„๏ธ Memory Subsystem - The Storage Hierarchy

Modern memory systems are highly sophisticated hierarchies:

๐ŸŽฏ Cache Architecture
Cache Organization: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Set 0: [Tag|Data] [Tag|Data] ... Wayโ”‚ โ”‚ Set 1: [Tag|Data] [Tag|Data] ... Wayโ”‚ โ”‚ Set 2: [Tag|Data] [Tag|Data] ... Wayโ”‚ โ”‚ ... โ”‚ โ”‚ Set N: [Tag|Data] [Tag|Data] ... Wayโ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ Address Format: [Tag Bits][Set Index][Block Offset] 20 8 4
๐Ÿ”„ Cache Policies
  • Write-Through: Update cache and memory
  • Write-Back: Update cache, memory later
  • LRU: Least Recently Used replacement
  • MESI: Cache coherence protocol
๐Ÿ’จ Memory Access Patterns
Access Pattern Analysis: Temporal Locality: Recently accessed data likely reused Spatial Locality: Nearby data likely accessed soon Sequential: Linear memory access (best case) Random: Unpredictable access (worst case) Cache Performance: Hit Rate = Cache Hits / Total Accesses Miss Penalty = Time to fetch from next level AMAT = Hit Time + (Miss Rate ร— Miss Penalty)

๐Ÿ”Œ I/O Subsystem - External Interface

Input/Output systems connect CPU to the external world:

๐Ÿš€ I/O Methods
1. Programmed I/O (Polling): while (!device_ready()) { // CPU waits, inefficient } data = read_device(); 2. Interrupt-Driven I/O: setup_interrupt_handler(); start_io_operation(); // CPU continues other work // Interrupt occurs when ready 3. Direct Memory Access (DMA): setup_dma_transfer(src, dest, size); start_dma(); // DMA controller handles transfer // CPU notification when complete
๐ŸŒ Modern I/O Architectures
  • PCIe: High-speed serial interconnect
  • NVMe: Optimized storage protocol
  • USB4/Thunderbolt: Universal connectivity
  • Network: Ethernet, WiFi, 5G integration
โšก Performance Optimization
I/O Performance Metrics: Throughput: GB/s sustained transfer rate Latency: ฮผs time to first byte IOPS: Operations per second Bandwidth: Total data transfer capacity Modern NVMe SSD: Sequential Read: 7,000 MB/s Random Read: 1M IOPS Latency: < 100ฮผs Queue Depth: 64,000 commands

โšก Cache System - Performance Accelerator

Cache systems bridge the speed gap between CPU and memory:

๐Ÿ—๏ธ Multi-Level Cache Hierarchy
Modern Intel Core i9 Cache Structure: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Per Core: โ”‚ โ”‚ L1 I-Cache: 32KB (8-way) โ”‚ โ”‚ L1 D-Cache: 32KB (8-way) โ”‚ โ”‚ L2 Cache: 1.25MB (10-way) โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ Shared: โ”‚ โ”‚ L3 Cache: 24-36MB (12-way) โ”‚ โ”‚ (Smart Cache, inclusive) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ Cache Line Size: 64 bytes Prefetching: Hardware + Software hints
๐ŸŽฏ Cache Optimization Techniques
  • Prefetching: Predict future accesses
  • Victim Cache: Reduce conflict misses
  • Non-blocking: Handle multiple misses
  • Partitioning: Isolate critical data
๐Ÿ“Š Cache Performance Analysis
Cache Miss Categories: Compulsory (Cold): First access to data Capacity: Cache too small for working set Conflict: Set associativity limitations Coherence: Multi-processor consistency Performance Tools: perf stat -e cache-misses,cache-references Intel VTune Profiler AMD ฮผProf Hardware Performance Counters

๐Ÿ’ก Performance Optimization Deep Dive

Understanding CPU architecture enables sophisticated performance optimization:

๐ŸŽฏ Cache-Optimized Programming

// โŒ Cache-unfriendly: Column-major access (poor spatial locality) void matrix_multiply_bad(float A[N][N], float B[N][N], float C[N][N]) { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { C[i][j] = 0; for (int k = 0; k < N; k++) { C[i][j] += A[i][k] * B[k][j]; // B[k][j] cache miss! } } } } // โœ… Cache-friendly: Blocked/tiled access void matrix_multiply_optimized(float A[N][N], float B[N][N], float C[N][N]) { const int BLOCK = 64; // Fit in L1 cache for (int ii = 0; ii < N; ii += BLOCK) { for (int jj = 0; jj < N; jj += BLOCK) { for (int kk = 0; kk < N; kk += BLOCK) { // Work on BLOCKร—BLOCK submatrices for (int i = ii; i < min(ii+BLOCK, N); i++) { for (int j = jj; j < min(jj+BLOCK, N); j++) { float sum = 0; for (int k = kk; k < min(kk+BLOCK, N); k++) { sum += A[i][k] * B[k][j]; } C[i][j] += sum; } } } } } }

โšก SIMD and Vectorization

// โŒ Scalar processing void add_arrays_scalar(float *a, float *b, float *c, int n) { for (int i = 0; i < n; i++) { c[i] = a[i] + b[i]; // One operation per iteration } } // โœ… SIMD processing (AVX-512) void add_arrays_simd(float *a, float *b, float *c, int n) { for (int i = 0; i < n; i += 16) { // 16 floats per instruction __m512 va = _mm512_load_ps(&a[i]); __m512 vb = _mm512_load_ps(&b[i]); __m512 vc = _mm512_add_ps(va, vb); _mm512_store_ps(&c[i], vc); } } // Modern compiler auto-vectorization void add_arrays_auto(float * __restrict a, float * __restrict b, float * __restrict c, int n) { #pragma omp simd for (int i = 0; i < n; i++) { c[i] = a[i] + b[i]; // Compiler vectorizes } }

๐Ÿ”„ Branch Prediction Optimization

// โŒ Unpredictable branches (random pattern) int count_positive_unpredictable(int *arr, int n) { int count = 0; for (int i = 0; i < n; i++) { if (arr[i] > 0) { // Random branches = mispredictions count++; } } return count; } // โœ… Branchless optimization int count_positive_branchless(int *arr, int n) { int count = 0; for (int i = 0; i < n; i++) { count += (arr[i] > 0); // No branches! } return count; } // โœ… Sort-then-process (predictable branches) int count_positive_sorted(int *arr, int n) { std::sort(arr, arr + n); // Sort once int count = 0; for (int i = 0; i < n; i++) { if (arr[i] > 0) { // Predictable: all negatives first count = n - i; // Then all positives break; } } return count; }

๐ŸŽฏ Key Optimization Principles

  • ๐ŸŽช Spatial Locality: Access contiguous memory locations
  • โฐ Temporal Locality: Reuse recently accessed data
  • ๐Ÿš€ Vectorization: Use SIMD instructions for parallel operations
  • ๐ŸŽฏ Branch Prediction: Make branches predictable or eliminate them
  • ๐Ÿ”„ Pipeline Efficiency: Minimize data dependencies
  • ๐Ÿ’พ Cache Blocking: Tile data to fit in cache levels
  • โšก Prefetching: Hint upcoming memory accesses
  • ๐ŸŽช False Sharing: Avoid cache line contention in multi-threading

๐Ÿ”ฎ Future of Processor Architecture

๐ŸŒŸ Emerging Technologies

๐Ÿง  Neuromorphic Computing

Brain-inspired architectures with spiking neurons

  • Intel Loihi: 131,072 neurons
  • IBM TrueNorth: 1M neurons
  • Power: Ultra-low (~1mW)
  • Learning: Online adaptation

โš›๏ธ Quantum Computing

Quantum bits (qubits) with superposition and entanglement

  • IBM Quantum: 1000+ qubits
  • Google Sycamore: Quantum supremacy
  • Algorithms: Shor's, Grover's
  • Applications: Cryptography, optimization

๐Ÿ’ก Photonic Computing

Light-based processing for ultra-high speed

  • Speed: Light-speed operations
  • Bandwidth: Wavelength multiplexing
  • Power: Low electrical consumption
  • Heat: Minimal thermal generation

๐Ÿงฌ DNA Computing

Biological computing using DNA sequences

  • Density: Extreme information storage
  • Parallelism: Massive parallel processing
  • Applications: Bioinformatics, optimization
  • Speed: Slow but massively parallel

๐Ÿ“ˆ Industry Trends

  • ๐ŸŽฏ Specialization: Domain-specific accelerators (AI, crypto, networking)
  • ๐Ÿ”— Heterogeneous: CPU+GPU+NPU+DSP integration
  • ๐Ÿ“ฆ Chiplets: Modular processor design
  • ๐ŸŒก๏ธ Near-Threshold: Ultra-low voltage operation
  • ๐ŸŽช 3D Stacking: Vertical integration for density
  • โšก Processing-in-Memory: Compute where data resides